MLE (1) 썸네일형 리스트형 최대 우도 추정법(Maximum Likelihood Estimation, MLE) 데이터 분석과 인공지능 개발에서 중요한 것은 "데이터" 입니다.우리가 학교에서 배운 통계의 하나는 분포를 먼저 가정하고, 해당 분포에서 특정 값이 나올 통계적 확률을 계산하는 것이었습니다. $$X \sim N(μ, σ^2)$$ 이것은 확률변수 X가 평균 μ, 표준편차 σ인 정규분포(Normal distribution)를 따른다(~)는 표현식입니다. 어렵지 않죠? 그런데, 우리는 실제 분석과 개발에서 대부분 그 "분포" 라는 것을 모릅니다. 우리에게 주어진 것은 한 줌의 샘플 "데이터" 뿐이죠. 그래서 우리는 그 Sample data를 가지고, 전체 집단(Population)을 추정해야 합니다. 전체 집단을 다른 말로는 모집단이라고도 하죠. 이 모집단을 추정한다는 것은 앞서 정규분포를 정의했을 때 처럼,.. 이전 1 다음